Quarter 1-Mid Quarter 1

Domains	Numbers and Operations in Base Ten	Numbers and Operations in Base Ten	Operations and Algebraic Thinking	Operations and Algebraic Thinking	Operations and Algebraic Thinking
Cluster	Use place value understanding in properties of operations to perform multi-digit arithmetic.	Use place value understanding in properties of operations to perform multi-digit arithmetic.	Represent and solve problems involving multiplication and division.	Understand properties of multiplication and the relationship between multiplication and division.	Represent and solve problems involving multiplication and division.
Target Standards	MAFS.3.NBT.1.1 : Use place value understanding to round whole numbers to the nearest 10 or 100 .	MAFS.3.NBT.1.2 : Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	MAFS.3.OA.1.1 : Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each.	MAFS.3.OA.2.5 : Apply properties of operations as strategies to multiply and divide.	MAFS.3.OA.1.2 : Interpret whole-number quotients of whole numbers.
Mathematical Practices	6 and 8	6 and 8	1, 2, 4, 6 and 7	2, 5, 7 and 8	1, 24,6 and 7
$\begin{aligned} & \text { Objective/ } \\ & \text { Learning Goal/ } \\ & \text { SWBT } \end{aligned}$	*Round whole numbers to the nearest 10 and 100 through the use of a number line, hundred chart, place value chart, etc. *Explain the results of rounding.	*Understand the relationship between addition and subtraction. Use the standard algorithm for multi-digit addition and subtraction.	*Identify the symbol for multiplication and its meaning. *Identify parts of multiplication equations.	*Apply the Commutative, Associative, and Distributive Properties to decompose, regroup, and/or reorder factors.	*Identify parts of division equations. *Interpret quotients in division. *Describe a context that could be represented as the quotient of two whole numbers.
IReady Resources	Unit 2 Lesson 8	Unit 2 Lesson 9	Unit 1 Lesson 1	Unit 1 Lessons 2-3	Unit 1 Lesson 4

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry $=35 \%$ of test. Quarters 1-3 on this map reflect that design.

Mid Quarter 1-End Quarter 1			
Domains	Operations and Algebraic Thinking	Operations and Algebraic Thinking	Operations and Algebraic Thinking
Cluster	Understand properties of multiplication and the relationship between multiplication and division.	Represent and solve problems involving multiplication and division.	Represent and solve problems involving multiplication and division.
Target Standards	MAFS.3.OA.2.6 : Understand division as an unknown-factor problem.	MAFS.3.OA.1.4 : Determine the whole number in a multiplication or division equation relating three whole numbers.	MAFS.3.OA.4.9 : Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations.
Mathematical Practices	1, 2, 4, 6 and 7	2, 6 and 8	3 and 7
Objective/Learning Goal/SWBT	*Identify the inverse operation of a multiplication or division equation. *Use variables to demonstrate inverse operations for multiplication and division.	*Identify the inverse operation of a multiplication or division equation.	*Identify and describe arithmetic patterns that occur in number charts and addition tables. *Explain arithmetic patterns using properties of operations.
IReady Resources	Unit 1 Lesson 5	Unit 1 Lesson 6	Unit 1 Lesson 7

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry=35\% of test. Quarters 1-3 on this map reflect that design.

	Quarter 2-Mid Quarter 2		
Domains	Numbers and Operations in Base Ten	Operations and Algebraic Thinking	Operations and Algebraic Thinking
Cluster	Use place value understanding in properties of operations to perform multi-digit arithmetic.	Represent and solve problems involving multiplication and division.	Use place value understanding in properties of operations to perform multi-digit arithmetic.
Target Standards	MAFS.3.NBT.1.3 : Multiply one-digit whole numbers by multiples of 10 in the range 10-90, using strategies based on place value and properties of operations.	MAFS.3.OA.1.3 : Use multiplication and division within 100 to solve problems in situations involving equal groups, arrays, and measurement quantities, e.g., by used drawings and equations with a symbol for the unknown number to represent the problem.	MAFS.3.OA.4.8 : Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
Mathematical Practices	3 and 7	1, 2, 4, 6 and 7	3 and 7
Objective/Learning Goal/SWBT	*Use base ten blocks, diagrams, or hundreds charts to multiply one-digit numbers by multiples of 10 . *Multiply one-digit numbers by multiples of 10 using strategies based on place value and operation properties.	*Identify and describe arithmetic patterns that occur in number charts and addition tables. *Explain arithmetic patterns using properties of operations.	*Add and/or subtract two-step problem situations within 1000 using a variety of strategies. *Choose the correct operations to perform the first and second computations to solve two-step word problems. *Represent problems using equations with a letter (variable) to represent unknown quantities.
IReady Resources	Unit 2 Lesson 10	Unit 3 Lesson 11	Unit 3 Lessons 12-13

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end f Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry $=35 \%$ of test. Quarters 1-3 on this map reflect that design

Third Grade Math Curriculum Map

Mid Quarter 2-End Quarter 2				
Domains	Measurement and Data	Measurement and Data	Measurement and Data	Measurement and Data
Cluster	Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.	Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.	Represent and interpret data.	Represent and interpret data.
Target Standards	MAFS.3.MD.1.1 : Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	MAFS.3.MD.1.2 : Measure and estimate liquid volumes and masses of objects using standard units of grams, kilograms, and liters. Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings to represent the problem.	MAFS.3.MD.2.3 : Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one-and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.	MAFS.3.MD.2.4 : Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units: whole number, halves, or quarters.
Mathematical Practices	1,4 and 5	1,4 and 5	3 and 7	2 and 5
Objective/Learning Goal/SWBT	*Tell and write time to the nearest minutes using analog and digital clocks. *Measure duration (intervals) of time in minutes. *Use clock models and number lines to solve word problems using time intervals in minutes. *Solve addition and subtraction word problems involving durations (intervals) of time measured in minutes.	*Estimate masses of solid objects. *Estimate volumes of liquids. *Measure masses of solid objects. *Measure volumes of liquids. *Solve one-step word problems involving masses or volumes using addition, subtraction, multiplication, or division.	*Identify different parts of a picture graph and a bar graph. *Read and interpret scaled picture and bar graphs in order to solve one- and two-step problems. *Collect data through a survey or experiment. *Determine the appropriate increments for a scaled bar graph and appropriate key for a scaled picture graph. *Construct scaled bar graphs and scaled picture graphs.	*Use a ruler to measure lengths of objects in whole, half, and quarter inches. *Record measurement data in an appropriate data collection table. *Make a line plot with the horizontal scale marked off in whle number, half, or quarter units to display the data that is collected.
IReady Resources	Unit 5 Lessons 20-21	Unit 5 Lessons 22-23	Unit 5 Lessons 24-25	Unit 5 Lesson 26

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry $=35 \%$ of test. Quarters 1-3 on this map reflect that design.

Third Grade Math Curriculum Map

Quarter 3-Mid Quarter 3				
Domains	Measurement and Data	Measurement and Data	Measurement and Data	Geometry
Cluster	Geometric Measurement: Understand concepts of area and relate area to multiplication and division.	Geometric Measurement: Understand concepts of area and relate area to multiplication and division.	Geometric Measurement: Recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.	Understand concept of angles and measure angles.
Target Standards	MAFS.3.MD.3.5 : Recognize area as an attribute of plane figures and understand concepts of area measurement. MAFS.3.MD.3.6 : Measure area by counting unit squares.	MAFS.3.MD.3.7 : Relate area to the operations of multiplication and addition.	MAFS.3.MD.4.8 : Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	MAFS.3.G.1.1 : Understand that shapes in different categories may share attributes, and that the shared attributes can define a larger category. Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
Mathematical Practices	2, 6 and 8	2, 6 and 8	2,6 and 8	1, 3 and 7
Objective/ Learning Goal/ SWBT	*Define a unit square. *Describe area as the measure of space within a plane figure and explain why area is measured in square units. *Measure the area of a shape or flat surface by covering it with unit squares, with no gaps or overlaps and counting the number of unit squares used.	*Use square tiles to find the area of rectangles with whole number side lengths. *Explain the relationship between tiling and multiplying side lengths to find the area of rectangles. *Determine possible lengths and widths of a rectangle when given the area. *Use appropriate labels to represent answers to area problems. *Use area models to explain the Distributive Property. *Decompose an irregular figure into non-overlapping rectangles to find its area.	*Find the perimeter of polygons when given the lengths of all sides. *Find the unknown side lengths of polygons when given the perimeter. *Demonstrate how rectangles with the same perimeter can have different areas. *Demonstrate how rectangles with the same area can have different perimeters.	*Understand that a quadrilateral is a closed figure with four straight sides. *Analyze and compare the attributes of quadrilaterals. *Classify qudrilaterals by their attributes. *Identify characteristics of the angles and the relationship between opposite sides in a quadrilateral. *Draw quadrilaterals other than rhombuses, rectangles, and squares. *Demonstare an understanding of the hierarchy of quadrilaterals.
IReady Resources	Unit 5 Lesson 27	Unit 5 Lessons 28-29	Unit 5 Lesson 30	Unit 6 Lessons 31-32

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry=35\% of test. Quarters 1-3 on this map reflect that design.

Third Grade Math Curriculum Map

Mid Quarter 3-End Quarter 3					
Domains	Numbers and Operations: Fractions	Geometry			
Cluster	Develop understanding of fractions as numbers.	Represent and solve problems involving Develop understanding of fractions as numbers.	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.	Understand concept of angles and measure angles.
Target Standards	MAFS.3.NF.1.1 : Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / \mathrm{b}$.	MAFS.3.NF.1.2 : Understand a fraction as a number on the number line; represent fractions on a number line diagram.	MAFS.3.NF.1.3 : Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a: Understand two fractions as equivalent if they are the same size, or the same point on a number line. b: Recognize and generate simple equivalent fractions. Explain why the fractions are equivalent, e.g., by using a visual fraction model.	MAFS.3.NF.1.3 : Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. c: Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. d: Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are only valid when the two fractions refer to the same whole. Record the results of comparisons with the symbols $<,>$, or $=$.	MAFS.3.G.1.2 : Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole.
Mathematical Practices	3, 4 and 6	1,2 and 8	3, 4, 5, 6 and 7	3, 4, 5, 6 and 7	3,4 and 6
Objective/ Learning Goal/ SWBT	*Identify one of the equal parts as a unit fraction represented as 1/b. *Determine the number of equal parts that make a whole from a given model. *Demonstrate and explain how breaking a shape into more equal-sized parts creates smaller equal-sized parts.	*Partition the intervals between 0 and 1 on a number line into equal-sized segments of 2,3,4,6 and 8 . *Identify one of the equal parts as a unit fraction represented as $1 / \mathrm{b}$. *Determine the number of equal parts that make a whole from a given number line. *Represent fractional parts of area models and linear models and linear models using concrete materials, and graphic representations.	*Explain fractional equivalence. *Use models to show and explain whole numbers as fractions.	*Locate equivalent fractions on a number line. *Identify and represent equivalent fractions using area models and linear models. *Use models to show and explain whole numbers as fractions. *Compare two fractions with the same denominator or the same numerator with and without visual models. *Use symbols <, >, and = to compare fractions.	*Partition area models into equal-sized parts of $2,3,4,6$ and 8 *Explain that the denominator represents the number of equal-sized parts. *Explain that the numerator represents the count of the number of equal-sized parts. *Describe the area of each part as a unit fraction of the whole.
IReady Resources	Unit 4 Lesson 14	Unit 4 Lesson 15	Unit 4 Lessons 16-17	Unit 4 Lessons 17-19	Unit 6 Lesson 33

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry $=35 \%$ of test. Quarters 1-3 on this map reflect that design.

Third Grade Math Curriculum Map

Quarter 4-Mid Quarter 4		
Domains	Operations and Algebraic Thinking	Operations and Algebraic Thinking
Cluster	Use place value understanding in properties of operations to perform multi-digit arithmetic.	Represent and solve problems involving multiplication and division.
Target Standards	MAFS.3.OA.4.8 : Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	MAFS.3.OA.3.7 : Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division.
Mathematical Practices	3 and 7	2, 6 and 8
Objective/ Learning Goal/SWBT	*Add and/or subtract two-step problem situations within 1000 using a variety of strategies. *Choose the correct operations to perform the first and second computations to solve two-step word problems. *Represent problems using equations with a letter (variable) to represent unknown quantities.	*Demonstrate fluency with multiplication facts through 9.
IReady Resources	Unit 3 Lessons 12-13	

Mid Quarter 4-End Quarter 4

5/2016
 Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.

 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry=35\% of test. Quarters 1-3 on this map reflect that design.

Third Grade Math Curriculum Map

Domains	Numbers and Operations: Fractions	Numbers and Operations: Fractions	Numbers and Operations: Fractions	Numbers and Operations-Fractions	Numbers and Operations-Fractions	Numbers and Operations-Fractions
Cluster	Represent and solve problems involving Develop understanding of fractions as numbers.	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.	Extend understanding of fraction equivalence and ordering.	Extend understanding of fraction equivalence and ordering.	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
Target Standards	MAFS.3.NF.1.2 : Understand a fraction as a number on the number line; represent fractions on a number line diagram.	MAFS.3.NF.1.3 : Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a: Understand two fractions as equivalent if they are the same size, or the same point on a number line. b: Recognize and generate simple equivalent fractions. Explain why the fractions are equivalent, e.g., by using a visual fraction model.	MAFS.3.NF.1.3 : Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. c: Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. d: Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are only valid when the two fractions refer to the same whole. Record the results of comparisons with the symbols <, >, or $=$.	*Begins $4^{\text {th }}$ grade MAFS.4.NF.1.1 : Explain why a fraction a / b is equivalent to a fraction ($n \times a$) / ($n \times b$) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	MAFS.4.NF.1.2 : Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or a benchmark fraction, such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, <, or =.	MAFS.4.NF.2.3 : Understand a fraction a/b with $a>1$ as a sum of fractions $1 / b$.
Mathematical Practices	1, 2 and 8	3, 4, 5, 6 and 7	3, 4, 5, 6 and 7	3,5 and 7	3, 5 and 7	4 and 7
Objective/ Learning Goal/ SWBT	*Partition the intervals between 0 and 1 on a number line into equal-sized segments of $2,3,4,6$ and 8 . *Identify one of the equal parts as a unit fraction represented as $1 / b$. *Determine the number of equal parts that make a whole from a given number line.	*Explain fractional equivalence. *Use models to show and explain whole numbers as fractions.	*Locate equivalent fractions on a number line. *Identify and represent equivalent fractions using area models and linear models. *Use models to show and explain whole numbers as fractions. *Compare two fractions with the same denominator or the same numerator with and without visual models.	*Generate equivalent fractions using visual models. *Recognize how to display 1 in the form of a fraction. *Apply the Identity Property of Multiplication to generate equivalent fractions numerically. *Explain, using visual representation, how and why	*Explain that fractions can only be compared when they refer to the same whole. *Compare two fractions visually. *Determine whether a fraction is closest to zero, to one whole or to a benchmark fraction.	*Demonstrate with visual models that adding fractions within the same whole is joining parts of that whole. *Demonstrate with visual models that subtracting fractions within the same whole is separating parts of that whole.

5/2016
Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.
 knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry $=35 \%$ of test. Quarters 1-3 on this map reflect that design.

Third Grade Math Curriculum Map

	*Represent fractional parts of area models and linear models and linear models using concrete materials, and graphic representations.		*Use symbols <, >, and = to compare fractions.	fractions can be equivalent even though the numbers are not the same.	*Compare two fractions with different numerators and different denominators. *Record the results of comparisons with the symbols <, >, or $=$.	*Decompose a mixed number. *Add and subtract mixed numbers.
IReady Resources	Unit 4 Lesson 15	Unit 4 Lessons 16-17	Unit 4 Lessons 17-19			

[^0] knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.
 Measurement, Data, and Geometry=35\% of test. Quarters 1-3 on this map reflect that design.

[^0]: 5/2016
 Please note: All standards should be taught in order of the curriculum map, but at the pace of your students' data.

