Content Area:	Mathematics	Course:	Algebra 2	Pacing:	10
Domain(s): Algebra, Functions			Unit: 1 Linear		
Standard (Student Friendly):		Standard:	Standard:		
Find the slope from a graph or set of data.		MAFS.912.F-IF.2.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph		
Find intercepts, slope and equation of a line.		MAFS.912.A.3.9	Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.		
Solve system of equations graphing, substitution, or elimination		MAFS.912.A-REI.3.6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.		
Students will write system of equations given a real world situation		MAFS.912.A-CED.1.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.		
1.2Identify parent functions from a graph and an equation. Use parent function in real world situations.		MAFS.912.F-BF.2.3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k$ $f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.		
12.7 Solving non-linear system of equation.		MAFS.912.A-REI.3.7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.		
12.5 Write an equation of a parabola.		MAFS.912.G-GPE.1.2	Derive the equation of a parabola given a focus and directrix.		
Essential Question:			Knowledge: Students will....		
- Can you explain the effects of $f(x)$ on a graph when transformed in a positive or negative directions? - Can you use parent functions to model real world data and make estimates for unknown values? - Can you graph linear or quadratic functions by hand or using technology? - Can you graph piecewise functions? - Do you know how to solve systems using substitution or elimination? - Can you find the rate of change from a linear graph. - Can you identify and graph a linear function?			- Students continue to solve real-world problems by writing and solving appropriate linear equations, inequalities, or system of equations. - Students will apply the meaning of the parameters in a linear function to a real world situation. - Students will identify parent functions by name, graph, and equation. - Students will learn how to graph a piecewise function based on each piece with a specific domain. - Students will be able to graph linear and nonlinear parent functions. - Students will be able to identify rate of change and graph linear functions.		
Resources (with embedded links):			Assessments:		
Rate of change Linear Equations 1.2 Parent Functions Absolute Value Parent Functions System of Equations Systems Algebraically			Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz		

Essential Vocabulary:	Lesson Activities:
Parent function Piecewise function Linear Function Slope Solution of a system Inconsistent Consistent Dependent system Independent system	Transforming functions Changing Rates Equation Grapher
Substitution	
Substitution-no solution	
Substitution-algebraically vs graph	
Systems-graphically 1	
Systems-graphically 2	
Elimination	
Why Elimination works	
Independent, dependent, inconsistent	

Content Area:	Mathematics	Course:	Algebra 2	Pacing:	24
Domain(s): Functions			Unit: 2 Quadratic Functions		
Standard (Student Friendly):		Standard:	Standard:		
2.1Identify the effects of changes in the coefficients of $y=(x-h)^{2}+\mathrm{k}$ and transform them.		MAFS.912.F-BF.2.3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k$ $f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them		
2.2Define, identify, graph, and use maximum and minimum to solve problems.		MAFS.912.F-IF.3.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima		
MID-QUARTER ASSESSMENT					
2.3Solve quadratic expression by graphing or factoring. Convert from one form to another. Define maximum, minimum, and roots.		MAFS.912.A-SSE.2.3 MAFS.912.F-IF.3.8 MAFS.912.A-APR.2.3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.		
2.5 Define and use imaginary and complex numbers		MAFS.912.N-CN.1.2 MAFS.912.N-CN.1.1 MAFS.912.N-CN.3.7	Use the relation $\mathrm{i}^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ with a and b real. Solve quadratic equations with real coefficients that have complex solutions.		
2.6 Solve quad using quadratic	atic equations formula	MAFS.912.A-REI.2.4	Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.		
2.9 Perform operations with complex numbers		MAFS.912.N.CN.1.2			
FIRST 9 WEEKS ASSESSMENT					

Essential Question:	Knowledge: Students will....
- Can you transform quadratic equations from its original form and find the value of K ? - Determine if a function is even or odd. - Determine if a function has a maximum or minimum and and its vertex. - Can you factor the quadratics and determine their zeros? - Can you convert a quadratic function to standard form. - Can you find the intercepts, axis of symmetry, and vertex of a quadratic function? - Know a complex number and represent it in the form of a + bi. - Can you perform operations with complex numbers? - Can you solve quadratic equations and present solutions with complex numbers? - Can you solve quadratic equations by completing the square or using the quadratic formula. - Can you solve simple systems consisting of a linear equation and a quadratic equation in two variables. - Can you define a parabola, focus, and directrix?	- Students will be able to factor a simple quadratic equation to find intercepts. - Given an equation and a graph of that equation, students will be able to accurately describe the effects of changing the equation on the graph. - Students will be able to solve systems of equations involving linear, quadratic, and other nonlinear functions. - Students will be able to apply quadratic functions to real world situations in order to solve problems. - Students will use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. - Students will extend their knowledge of the quadratic formula to include complex numbers. - Students will be able to describe the relationship between the focus, directrix, and graph of a parabola. - Students will be able to solve a system of nonlinear equations in two variables by the substitution and elimination method.
Resources (with embedded links):	Assessments:
$\underline{2.1}$ $\underline{2.4}$ $\underline{2.7}$ $\underline{2.2}$ $\underline{2.5}$ $\underline{2.9}$ $\underline{2.3}$ $\underline{12.6}$ $\underline{12.7}$	Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz
Essential Vocabulary:	Lesson Activities:
Axis of symmetry Standard form Maximum value Minimum value Parabola Vertex form Zero of function Root of function Binomial Trinomial Imaginary number Complex number Complex conjugate discriminant	Definition of a Parabola Properties of a Parabola Quadratic Equations and Robots Imaginary roots in quadratics Complex solutions in quadratics Complex roots in quadratic formula Discriminant Quadratic Formula Completing the Square Solving by taking square root Building a Quadratic Function Building a Quadratic Function from X Deriving the Quadratic Formula Identify Even and Odd Functions Graphing Quadratic Functions Wakulla Caves Parabolas Through two points Graphs of a second degree polynomial Solving quadratics using square roots Intro to imaginary numbers Multiply Complex numbers Subtract complex numbers Computations with complex numbers

	Finding Maximum and Minimum
	Building a General Quadratic Function Graphs of Quadratic Functions Increasing or Decreasing A Circle and a line A A linear and Quadratic System Video of Parabola and a line 1 Video Parabola and lines 2 Write and solve quadratic equations Write and Solve Inequalities Write and solve simple rational Equations

Content Area: Mathematics	Course:	Algebra 2	Pacing:	14
Domain(s): Arithmetic with Polynomials		Unit: 3 Polynomial Functions		
Standard (Student Friendly):	Standard:	Standard:		
3.1-3 Understand the definition of a polynomial and show how to add, subtract, multiply, and divide.	MAFS.912.A-APR.1.1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.		
3.2 Prove polynomial identities and use them to describe numerical relationships such as triples.	MAFS.912.A-APR.3.4	Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}=$ $\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.		
3.3 Divide polynomials using long division. Rewrite simple rational expressions and divide and simplify.	MAFS.912.A-APR.2.2 MAFS.912.A-APR.4.6	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system		
3.4Distinguish between a factor, term, coefficient, expression, and the context of an expression. Rewrite and identify expression according to their common factors, terms, and other similarities.	MAFS.912.A-SSE.1.1	Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients Use the structure of an expression to identify ways to rewrite it. For example, see $x 4-y 4$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$		
3.5 Factor a quadratic expression and identify its zeros, max, min, and other properties.	MAFS.912.A-APR.2.3 MAFS.912.F-IF.3.9	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		
3.7 Graphically display a function and transform it into different forms. Understand vertex, intercepts, max, min, and end behavior.	MAFS.912.F-IF.3.7 MAFS.912.F-IF.2.4	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases a. Graph linear and quadratic functions and show intercepts, maxima, and minima. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.		

Essential Question:	Knowledge: Students will....
- Can you identify and perform operations with polynomials? - Do you know how to divide polynomials using long division? - Can you classify and graph a polynomial? - Can you use binomial expansion to multiply polynomials? - Can you factor a polynomial? Do you know what their zeros are? - Do you know the difference of a max and min? - Can you determine the end behavior of a polynomial? - Can you identify zeros of a polynomial?	- Students will be able to... Write polynomials in standard form. Classify polynomials. Add, subtract, and multiply polynomials. Expand a product of two binomials. Factor polynomials using the GCF, perfect square trinomials, and difference of squares. - Student will learn how to multiply, add, subtract, and factor quadratic and cubic polynomials using concrete models and analytic techniques - Students will be able to graph linear and quadratic functions and show intercepts, maxima, and minima. - Students will be able to factor polynomials and identify zero.
Resources (with embedded links):	Assessments:
$\begin{aligned} & \frac{3.1}{3.2} \\ & \frac{3.3}{3.3} \\ & \frac{3.4}{3.5} \\ & \frac{3.7}{7} \end{aligned}$	Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz
Essential Vocabulary:	Lesson Activities:
Monomial Degree Leading coefficient Synthetic division Multiplicity End behavior Turning point Local max Local min	Special Products Division of Polynomials using inspection Polynomial Remainder Theorem Dividing Polynomials Factoring and Zeros Trina's triangles Max and Min Graphs of Second degree Polynomials Combine Fuel Efficiency

Content Area:	Mathematics	Course:	Algebra 2	Pacing:	12
Domain(s): Rational Expressions			Unit: 4 Rational and Radical Functions		
Standard (Student Friendly):		Standard:	Standard:		
5.1 Solve prob direct, inverse variation.	s involving d combined	MAFS.912.A-CED.1.4 MAFS.912.A-CED.1.3 MAFS.912.F-BF.2.4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse.		
5.2-5.3Simplify operations with expressions	and perform rational	MAFS.912.A-APR.4.6	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $\mathrm{b}(\mathrm{x})$, using inspection, long division, or, for the more complicated examples, a computer algebra system.		
5.4Graph and tr rational express Identify key feat expressions.	nsform ns. res of rational	MAFS.912.F-IF.3.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.		
5.5Solve rationa	equations.	MAFS.912.A-REI.1.2 MAFS.912.A-REI.1.1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.		
5.6 Rewrite radica using rational Use properties simplify rational	al equations ponents. exponents to exponents.	MAFS.912.N-RN.1.2 MAFS.912.N-RN.1.1 E	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define to be the cube root of 5 because we want $=$ to hold, so must equal 5		
6.3Write and gra functions.	ph piecewise	MAFS.912.F-IF.3.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.B.Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.		
Essential Question:			Knowledge: Students will....		
- Can you solve equation with rational and radical equations? - Can you simplify a radical expression? - Do you know what makes a rational expression undefined?			- Students will be able to multiply and divide rational expressions - Students will be able to understand how to simplify an expression that has a polynomial in the numerator and denominator. - Students will be able to understand and be able to identify		

- How do you simplify a rational expression?
- Can you perform operations with rational expressions?
- Can you solve problems involving rational equations and inequalities?

equations and inequalities?	and inequalities Compose rational functions with other functions Create rational functions to represent real life situations
Resources (with embedded links):	Assessments:
$\underline{5.1}$	Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz
$\underline{5.2}$	Lesson Activities:
$\underline{5.5}$	Solving a Literal equation Essential Vocabulary:
Index Rational exponent Extraneous solution Rational equation Rational function Discontinuous function Continuous functions Rational expression Direct variation Inverse variation	Rainfall-Inverses
Dividing	
Power of a Power	

Content Area:	Mathematics	Course:	Algebra 2	Pacing:	20
Domain(s): Interpreting Functions			Unit: 6 Radical Functions		
Standard (Stud	ent Friendly):	Standard:	Standard:		
6.5 Understand functions, how functions, and p operations with	composition evaluate erform unctions.	MAFS.912.F-BF.1.1	Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. c. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time		
SECOND Quarter TEST					
6.6 Determine if a function is a fu able to find the	an inverse of nction and be verse.	MAFS.912.F-BF.2.4	Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$. b. Verify by composition that one function is the inverse of another. c. Read values of an inverse function from a graph or a table, given that the function has an inverse. d. Produce an invertible function from a non-invertible function by restricting the domain.		
5.7 Graph radic and inequalities	al functions	MAFS.912.F-IF.3.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.		
5.8 Solve radic and inequalities	equations	MAFS.912.A-REI.1.2 S MAFS.912.A-CED.1.3	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods		
Essential Question:			Knowledge: Students will....		
- Can you perform operations with composition functions? - What is the process for solving radical equations? - How are radical equations different from linear equations? - How does an inverse function relate to the original function? - Can you solve radical equations with extraneous solutions? - What is an extraneous solution? - How do graphing inequalities differ from graphing linear equations?			- Students will solve radical equations that model real-world relationships. - Create and Reflect upon their understanding of composition and inverse function. - Students will be able to understand and convey why certain changes to the equations will transform the graph. And also be able to identify what changes have been made to the equation given the graph with the changes made. - Students will be able to use function notation correctly. Find the domain and range of a function. Combine functions by addition, subtraction, multiplication, division and composition.		
Resources (with embedded links):			Assessments:		
6.5			Observations		

$\mathbf{6 . 4}$	Exam view
$\mathbf{6 . 6}$	Exit tickets
$\mathbf{5 . 6}$	Performance Matters
$\mathbf{5 . 7}$	Near-pod
Quick writes/quiz	
$\underline{5.8}$	Lesson Activities:
Essential Vocabulary:	Graphs of compositions Radical Function Radical Equation Composition of Functions One-to-one function Inverse

FIRST SEMESTER EXAM

\begin{tabular}{|c|c|c|c|c|c|}
\hline Content Area: \& Mathematics \& Course: \& Algebra 2 \& Pacing: \& 15 \\
\hline \multicolumn{3}{|l|}{Domain(s): Linear, Quadratic, \& Exponential Functions} \& \multicolumn{3}{|l|}{Unit: 7 Exponential and Logarithm Functions} \\
\hline Standard (S \& ent Friendly): \& Standard: \& \multicolumn{3}{|r|}{Standard:} \\
\hline 4.1Write and exponential fu \& \begin{tabular}{l}
valuate \\
on expression.
\end{tabular} \& MAFS.912.F-LE.2.5 \& \multicolumn{3}{|l|}{Interpret the parameters in a linear or exponential function in terms of a context} \\
\hline 4.2Find the inv the function. \& and graph \& MAFS.912.F-BF.2.4

MAFS.912.F-IF.2.5 \& \multicolumn{3}{|l|}{| Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=$ $(x+1) /(x-1)$ for $x \neq 1$. b. Verify by composition that one function is the inverse of another. c. Read values of an inverse function from a graph or a table, given that the function has an inverse. d. Produce an invertible function from a non-invertible function by restricting the domain. |
| :--- |
| Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person hours it takes to assemble engines in a factory, then the positive integers would be an appropriate domain for the function. |} \\

\hline 4.3Write equiva exponential and functions \& t forms for garithm \& MAFS.912.A-CED.1.1

MAFS.912.F-IF.3.8 \& \multicolumn{3}{|l|}{| Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational, absolute, and exponential functions. |
| :--- |
| Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=, y=, y=, y=$, and classify them as representing exponential growth or decay |} \\

\hline 4.4Use properti change of base simplify logarith \& and the ormula to functions \& | MAFS.912.F-BF.2.a |
| :--- |
| MAFS.912.F-BF.2.4 | \& \multicolumn{3}{|l|}{| Use the change of base formula. |
| :--- |
| Find inverse functions |} \\

\hline 4.5 Solve expon logarithmic func \& ntial and ons. \& MAFS.912.F-LE.1.4 \& \multicolumn{3}{|l|}{For exponential models, express as a logarithm the solution to $=$ d where a, c, and d are numbers and the base b is 2,10 , or e ; evaluate the logarithm using technology} \\

\hline 4.6Use the natu logarithm equatio \& al base to solve ns. \& | MAFS.912.F-LE.1.4 |
| :--- |
| MAFS.912.A-CED.1.3 | \& \multicolumn{3}{|l|}{| For exponential models, express as a logarithm the solution to $=$ d where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology |
| :--- |
| Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. |} \\

\hline 4.7 Transform logarithm functi \& xponential and s. \& MAFS.912.F-IF.3.7 \& \multicolumn{3}{|l|}{Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are} \\
\hline
\end{tabular}

MAFS.912.A-REI.4.11	available, and showing end behavior. d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. Algebra II Toolkit 24 e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
Essential Question:	Knowledge: Students will....
- How do exponential functions model real-world problems and their solutions? - How do logarithmic functions model real-world problems and their solutions? - How are expressions involving exponents and logarithms related? - How do I graph an exponential function and determine its domain and range? - How do I write and exponential expression as a logarithm? - How do I use logarithms to solve exponential equations? - How do I use the properties of exponents to simplify logarithmic expressions and solve logarithmic equation?	- Students will be able to convert equations between logarithmic form and exponential form, evaluate common and natural logarithms and graph them. - Students will be able to: Use the properties of exponents. Evaluate and simplify expressions containing rational exponents. Solve equations containing rational exponents. Solve problems involving exponential growth and decay. Use the exponential function $y=x e$. Evaluate expressions involving logarithms. Solve equations involving logarithms. Find common logarithms and antilogarithms of numbers. Solve equations using common logarithms. Solve real-world applications with common logarithmic functions. Find natural logarithms of numbers. Solve equations using natural logarithms.
Resources (with embedded links):	Assessments:
$\underline{4.1}$ 4.2 4.3 4.4 4.5 4.6 4.7	Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz
Essential Vocabulary:	Lesson Activities:
Exponential function Base Asymptote Exponential growth Exponential decay Inverse relation Logarithm Natural logarithm	Canoe Trip Interest Canoe Trip Interest 2 Newtons Law-Exponential Estimation Exponential Graphs Carbon 14 -Dating Logistic Growth Throwing Baseballs Real World Exponential equations Snail Invasion Change of Base Proof of Change of Base

THIRD QUARTER ASSESSMENT

\begin{tabular}{|c|c|c|c|c|c|}
\hline Content Area: \& Mathematics \& Course: \& Algebra 2 \& Pacing: \& 15 \\
\hline \multicolumn{3}{|l|}{Domain(s): Statistics and Probability} \& \multicolumn{3}{|l|}{Unit: 8 Probability} \\
\hline Standard (Stud \& ent Friendly): \& Standard: \& \multicolumn{3}{|r|}{Standard:} \\
\hline *Union/intersect complements Khan Academy Set Operations Khan Academy- \& \begin{tabular}{l}
ons \\
intersections
\end{tabular} \& MAFS.912.S-CP.1.1 \& \multicolumn{3}{|l|}{Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").} \\
\hline 7.1Solve problem fundamental cou permutations, and combinations. \& s using the nting principle, d \& MAFS.912.S-CP.1.1 \& \multicolumn{3}{|l|}{Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").} \\
\hline 7.2 Find the theo experimental pro event. \& retical and bability of an \& MAFS.912.S-CP.1.3
MAFS.912.S-CP.1.5

MAFS.912.S-IC.1.2 \& \multicolumn{3}{|l|}{| Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B |
| :--- |
| Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer |
| 2 Decide if a specified model is consistent with results from a given data generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . |
| Would a result of 5 tails in a row cause you to question the model? |} \\

\hline 7.3 Find the probab independent and events. \& bability of dependent \& MAFS.912.S-CP.1.2

MAFS.912.S-CP.1.3 \& \multicolumn{3}{|l|}{| Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. |
| :--- |
| Understand the conditional probability of A given B as $\mathrm{P}(\mathrm{A}$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. |} \\

\hline 7.4Interpret and two-way frequen \& construct cy tables. \& MAFS.912.S-CP.1.4 \& \multicolumn{3}{|l|}{Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results} \\
\hline 7.5Find the prob mutually exclusi inclusive events \& ability of e and \& MAFS.912.S-CP.2.7 \& \multicolumn{3}{|l|}{Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.} \\
\hline \multicolumn{3}{|l|}{Essential Question:} \& \multicolumn{3}{|l|}{Knowledge: Students will....} \\

\hline \multicolumn{3}{|l|}{| -What is conditional probability? |
| :--- |
| - How do you determine if 2 events are mutually exclusive? |} \& \multicolumn{3}{|l|}{- Use permutations and combinations in conjunction with other probability methods to calculate probabilities of compound events and solve problems} \\

\hline
\end{tabular}

- How do I use the General Multiplication Rule to calculate probabilities?
- How do I determine when to use a permutation or a combination to calculate a probability?
- How do I graphically display the probability distribution of two way table?
- How do I calculate theoretical and experimental probabilities of probability distributions?
- How can frequency tables help us to find trends in real life scenarios?
- How can I communicate mathematically using set notation?
- What makes two random variables independent?
- How do I determine whether or not variables are independent?

Resources (with embedded links):	Assessments:
$\begin{aligned} & \frac{7.1}{7.2} \\ & \hline 7.3 \\ & \hline 7.4 \\ & \hline 7.5 \end{aligned}$	Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz
Essential Vocabulary:	Lesson Activities:
Fundamental counting Principle Permutation Factorial Combination Probability Sample space Favorable outcomes Complement Trial Experimental probability Joint-relative frequency Marginal relative Frequency Simple event Compound event Mutually exclusive Inclusive event	Freds Fun Factory-Permutations and Combinations Rain and Lighting Breakfast-Independence Titantic-Two-Way tables Titantic2 Titantic 3 Interactive Marbles Lucky Envelopes-Independent events Coffee at Mom's-Addition Rule Addition Rule Venn Diagram-Union and intersections Fred's Factory-Perm/Combination

Content Area:	Mathematics	Course:	Algebra 2	Pacing:	18
Domain(s): Interpreting Data			Unit: 9 Data Analysis and Statistics		
Standard (Student Friendly):		Standard:	Standard:		
8.1 Find the measure of Central tendency and Variation		MAFS.912.S-ID.1.4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve		
8.2 Explain how samples can be inferences about	ndom sed to make population	MAFS.912.S-IC.2.3 MAFS.912.S-IC.2.4 MAFS.912.S-IC.2.6	Recognize experimen relates to Use data from proportion; models for Evaluate	es of and ervational le survey margin of mpling d on data	differences among sample surveys, tudies; explain how randomization estimate a population mean or rror through the use of simulation
8.3Find commo differences betw experiments and	alities and en surveys studies.	MAFS.912.S-IC.2.3 MAFS.912.S-IC.2.5	Recognize experimen relates to Use data fr treatments; parameters	es of and ervational mized ex ations to d cant	ifferences among sample surveys, tudies; explain how randomization eriment to compare two cide if differences between
(*pg 594 extens normally distribu	n) Recognize d data.	MAFS.912.S-ID.1.4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve		
8.6Find binomia and test hypoth	probabilities is	MAFS.912.A-APR.4.6	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.		
8.7Use tables to distribution.	find normal	MAFS.912.S-ID.1.4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve		
Essential Question:			Knowledge: Students will....		
- If you were to pick a number that best describes all the data in a set, what number would you pick? - How is the mean (average) affect when all the data are close to each other, or when one piece of data is much bigger or much smaller than the rest? - How is the median (middle) determined when there is an even number of numbers in a set of data? - How can the measures of central tendency be used to describe tendencies and make predictions?			- State measures which describe central tendency of a set of numbers. - To define data and range of a set of data. To find the range. - To define arithmetic mean of a set of data. To compute the mean. - To find the median of a set of data. - To find the mode(s) of a set of data. - Produce sets of numbers whose statistical measures are specified. - To organize, plot and analyze statistical data.		

- Can you explain the purpose of sample surveys, experiments and observations?
- Can you use the data from sample surveys to estimate?
- I can compare reports by using standard deviation and normal distribution.

Resources (with embedded links):	Assessments:
$\frac{8.1}{8.2}$	Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz
$\underline{8.6}$	Lesson Activities:
Essential Vocabulary:	$\underline{\text { SAT scores-probability }}$
Expected value Probability distribution Variance Standard deviation Population Sample Random sample Experiment Observational study Controlled experiment Binomial theorem Binomial probability Standard normal value	$\underline{\text { Do you fit in this car-Standard Deviation }}$

FOURTH QUARTER ASSESSMENT

Content Area:	Mathematics	Course:	Algebra 2	Pacing:	16
Domain(s): Trigonometric Functions			Unit: 10 trigonometric Functions		
Standard (Stu	ent Friendly):	Standard:	Standard:		
10.1Understand relationships in	and use trig riangles.	MAFS.912.F-TF.1.2	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle		
10.2Determine trig functions.	e values of	MAFS.912.F-TF.1.2	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle		
10.3Convert ang degrees and rad	le between ans	MAFS.912.F-TF.1.2 MAFS.912.F-TF. 1.	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle 1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle; Convert between degrees and radians		
11.1Recognize functions	nd graph trig	MAFS.912.F-TF.2.5	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline		
11.3Use Fundam identities to simp expressions	mental trig lify and rewrite	MAFS.912.F-TF.3.8	Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to calculate trigonometric ratios.		
Essential Que	tion:		Knowledge: Students will....		
- What is the de able to explain - How can you vice versa? - How can the solve right trian - What is the ma function and it - How can the functions quick	finition of a rad this in your ow convert from rad ix basic trig fun ngles? ain difference b inverse? nit circle help kly?	an? You should be words. lians to degrees and ctions be used to tween a trig evaluate trig	- The student will learn the basic right-triangle definitions for sine, cosine, and tangent. - The student will understand the connections between trigonometric ratios. - Define radian measure and convert angle measures between degrees and radians, including revolutions. - Determine the quadrants where sine, cosine, and tangent are positive and negative. - Recognize and write the fundamental trigonometric identities		
Resources (with embedded links):			Assessments:		
$\frac{10.1}{10.2}$ $\frac{10.3}{11.1}$ $\frac{11.3}{1}$			Observations Exam view Exit tickets Performance Matters Near-pod Quick writes/quiz		
Essential Vocabulary:			Lesson Activities:		
Sine Cosine Tangent Cosecant Secant Cotangent		Angle of rotation Radian Unit circle Periodic function Cycles	Foxes and Rabbits2 Foxes and Rabbits 3 Intro to Unit Circle As the wheels turn Ferris Wheel Measures		Trig Identities Pythagorean Trig Identity Unit Circle PytHagorean Identity

